IM012 - Polinômios

1.	Introdução2
2.	Definição de polinômios com coeficientes Reais4
3.	Definição de Polinômios com Coeficientes Complexos5
4.	Valor Numérico de um Polinômio6
5.	Classificação de Polinômios (por grau)7
6.	Igualdade de Polinômios8
7.	Adição e Subtração de Polinômios9
8.	Multiplicação de Polinômios10
9.	Divisão de Polinômios – Geral11
10.	
11.	Divisão de Polinômios - Dispositivo Prático de Briot-Ruffini13
12.	Divisão de Polinômios – Teorema do Resto14
13.	Divisão de Polinômios – Teorema de D`Alembert15
14.	Polinômio de Grau 3: como encontrar todas as raízes conhecendo-se uma
	as 16
15.	Equações Polinomiais17
16.	Equação do Primeiro Grau18
17.	Equação do Segundo Grau19
18.	Equações do Terceiro e Quarto Graus20
19.	3
20.	· · ·
21.	Multiplicidade de uma raiz23
22.	Pesquisa de raízes24
23.	
24.	Teorema do Fator26
25.	Teorema das Raízes Complexas
26.	Dica sobre Raízes de Polinômios
27.	Produtos Notáveis29
28.	Fatoração30
29.	
30.	Algumas Curiosidades sobre Polinômios32
31.	Encontrar Coeficientes de Polinômios
32.	As relações de Girard35

1. Introdução

Os polinômios são expressões algébricas que envolvem variáveis elevadas a potências inteiras não negativas, multiplicadas por coeficientes constantes. Essas expressões são fundamentais na álgebra e têm diversas aplicações em matemática e ciências aplicadas.

Seguem alguns pontos importantes sobre polinômios:

- Definição: Um polinômio é uma expressão matemática da forma:
 P(x) = a_nxⁿ + a_{n-1}xⁿ⁻¹ + a_{n-2}xⁿ⁻² + . . . a₁x + a₀
 onde x é a variável, e a_n, a_{n-1}, . . . , a₁ ,a₀ são coeficientes
 constantes, e n é um número inteiro não negativo chamado grau do polinômio.
- **Termos**: Cada parte da expressão separada por sinais de adição é chamada de termo. Cada termo contém um coeficiente multiplicando a variável elevada a uma potência.
- **Grau do Polinômio**: O grau é o maior expoente ao qual a variável é elevada. O termo de maior grau determina o grau do polinômio.
- Monômio, Binômio, Trinômio: Polinômios podem ser classificados pelo número de termos. Um monômio tem um termo, um binômio tem dois, e um trinômio tem três.
- Operações com Polinômios: Adição e subtração de polinômios envolvem combinar termos semelhantes. A multiplicação de polinômios é realizada distribuindo cada termo do primeiro polinômio sobre todos os termos do segundo e somando os resultados.
- **Raízes ou Zeros**: As raízes de um polinômio são os valores de *x* que tornam o polinômio igual a zero. Encontrar as raízes é essencial para resolver equações polinomiais.
- Teorema do Resto e Teorema do Fator: O Teorema do Resto estabelece que, ao dividir um polinômio por um binômio do tipo x-c, o resto é igual ao valor do polinômio quando x = c. O Teorema do Fator relaciona as raízes de um polinômio com seus fatores.

- **Identidades Notáveis**: Algumas expressões polinomiais apresentam formas especiais, como as identidades notáveis, que incluem o quadrado da soma, o quadrado da diferença, e a diferença de quadrados.
- **Divisão de Polinômios**: Similar à divisão numérica, a divisão de polinômios envolve encontrar um quociente e um resto ao dividir um polinômio por outro.

2. Definição de polinômios com coeficientes Reais

<u>Definição</u>: Um polinômio ou função polinomial P, na variável x, é toda expressão do tipo: $P(x)=a_n x^n + a_{n-1} x^{n-1} + ... a_2 x^2 + a_1 x + a_0$, onde $n \in IN$, $a_i, i=0,1,...,n$ são números reais chamados coeficientes e as parcelas $a_i x^i$, i=1,...,n, termos do polinômio. Cada termo é denominado monômio.

Exemplos:

$$P(x)=5x^4+3x^3-2x+1;$$
 $P(x)=-8x+\pi;$ $P(x)=x^5+\sqrt{3}x^2+2$

Contra-exemplos (expressões que não representam polinômios):

$$f(x) = x - 3x^{\frac{1}{2}} + 5;$$
 $f(x) = x^{-4} + 2x + 1$

3. Definição de Polinômios com Coeficientes Complexos

Definição — Função Polinomial. Uma função polinomial p(x) é uma função $p: \mathbb{C} \to \mathbb{C}$ de somas finitas das potências inteiras e não negativas da variável x, ou seja:

$$p(x) = a_n x^n + a_{(n-1)} x^{(n-1)} + a_{(n-2)} x^{(n-2)} + \dots + a_2 x^2 + a_1 x + a_0$$

Com n um número inteiro não negativo, $(a_n, a_{(n-1)}, \dots, a_2, a_1, a_0) \in C$ e $x \in C$.

Os números $a_n, a_{(n-1)}, a_{(n-2)}, \dots, a_2, a_1, a_0$ são ditos coeficientes da função polinomial p(x).

- **Exemplo** 1 Seja $p : \mathbb{C} \to \mathbb{C}$, $p(x) = -x^2 + 3x 1$ é uma função polinomial com coeficientes $a_2 = -1$, $a_1 = 3$ e $a_0 = -1$.
- **Exemplo** 2 Seja $p : \mathbb{C} \to \mathbb{C}$, $p(x) = 2x^6 7ix^4 4x^3 + x^2 2x + 1 + i$ é uma função polinomial com coeficientes $a_6 = 2$, $a_5 = 0$, $a_4 = -7i$, $a_3 = -4$, $a_2 = 1$, $a_1 = -2$ e $a_0 = 1 + i$.

Observação Observe que os coeficientes do exemplo 1 são todos reais, assim dizemos que a função p, do exemplo 1, é uma função com coeficientes reais

Observação Observe que os coeficientes do exemplo 2 são todos complexos, assim dizemos que a função p, do exemplo 2, é uma função com coeficientes complexos

4. Valor Numérico de um Polinômio

Seja P(x) um polinômio.

Considere $x=\alpha$ ($\alpha \in IR$) um valor fixo atribuído a x.

Calcule
$$P(\alpha) = a_n \alpha^n + a_{n-1} \alpha^{n-1} + ... a_2 \alpha^2 + a_1 \alpha + a_0$$
.

 $P(\alpha)$ é o valor numérico do polinômio para $x=\alpha$.

OBS:

1. O valor numérico do polinômio P para x=0 é: $P(0)=a_n 0^n + a_{n-1} 0^{n-1} + ... a_2 0^2 + a_1 0 + a_0 = a_0$.

Isto é, P(0) é igual ao termo independente de x.

2. O valor numérico do polinômio P para x=1 é:

$$P(1) = a_n 1^n + a_{n-1} 1^{n-1} + \dots + a_2 1^2 + a_1 1 + a_0 = a_n + a_{n-1} + \dots + a_2 + a_1 + a_0.$$

Assim, $P(1) = \sum_{k=0}^{n} a_k$, isto é, P(1) é igual a soma dos coeficientes do polinômio.

3. Quando P(α)=0, dizemos que α é raiz do polinômio P(x).

5. Classificação de Polinômios (por grau)

O grau de um polinômio P(x), não nulo, é o maior expoente da variável x, com coeficiente não nulo, que aparece na expressão que define P(x).

Exemplo:

$$P(x)=5x^{4}-x^{6} \rightarrow gr(P)=6$$

$$P(x)=3x^{2}-5x+1 \rightarrow gr(P)=2$$

$$P(x)=5 \rightarrow gr(P)=0$$

OBS: Não se define o grau de polinômio nulo.

6. Igualdade de Polinômios

Dois polinômios P(x) e Q(x) são iguais, P(x)=Q(x), quando todos os seus coeficientes são ordenadamente iguais.

Sejam P(x)=
$$a_n x^n + a_{n-1} x^{n-1} + ... a_2 x^2 + a_1 x + a_0$$
 e Q(x)= $b_n x^n + b_{n-1} x^{n-1} + ... b_2 x^2 + b_1 x + b_0$

$$P(x)=Q(x) \leftrightarrow \begin{cases} a_n = b_n \\ a_{n-1} = b_{n-1} \\ \vdots \\ coefficientes de mesmo grau são iguais \\ \vdots \\ a_0 = b_0 \end{cases}$$

7. Adição e Subtração de Polinômios

A adição e subtração de polinômios é feita a partir da adição e subtração dos coeficientes correspondentes a um mesmo grau.

$$P(x)+Q(x)=(a_n+b_n)x^n+(a_{n-1}+b_{n-1})x^{n-1}+...(a_2+b_2)x^2+(a_1+b_1)x+(a_0+b_0)$$

$$P(x)-Q(x)=(a_n-b_n)x^n+(a_{n-1}-b_{n-1})x^{n-1}+...(a_2-b_2)x^2+(a_1-b_1)x+(a_0-b_0)$$

Exemplo:

$$P(x) = 3x^3 - 2x^2 + 2$$
 e $Q(x) = 3x^4 - 7x^3 + x + 1$

$$P(x)+Q(x) = (0+3)x^{4} + (3-7)x^{3} + (-2+0)x^{2} + (0+1)x + (2+1) = 3x^{4} - 4x^{3} - 2x^{2} + x + 3$$

$$P(x)-Q(x) = (0-3)x^{4} + (3-(-7))x^{3} + (-2-0)x^{2} + (0-1)x + (2-1) = -3x^{4} + 10x^{3} - 2x^{2} - x + 1$$

Observação a) Em geral, o grau do polinomio f(x) + g(x) é, no máximo, igual ao maior grau entre os graus de f(x) e de g(x) e, no mínimo, grau zero. Ou seja:

$$0 \le gr(f+g) \le \max\{gr(f), gr(g)\}\$$

b) O grau de f(x) * g(x) é dado pela soma do grau de f(x) com o grau de g(x). Ou seja:

$$gr(f.g) = gr(f) + gr(g)$$

8. Multiplicação de Polinômios

A multiplicação é feita pela propriedade distributiva da multiplicação em relação à adição e multiplicação.

OBS: Se o grau do polinômio P é n e o grau do polinômio Q é n, então o grau do polinômio P.Q será n+m.

Exemplo:
$$P(x)=2x-1 e Q(x)=5x^2+2x-2$$

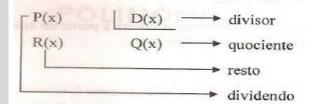
$$P(x).Q(x)=(2x-1)(5x^2+2x-2)$$

$$P(x).Q(x) = 10x^3 + 4x^2 - 4x - 5x^2 - 2x + 2$$

$$P(x).Q(x)=10x^3-x^2-6x+2$$

9. Divisão de Polinômios - Geral

Dividir um polinômio P(x) por um polinômio D(x), não nulo, é achar um par de polinômios Q(x) e R(x), de tal maneira que:



Ou seja, dividir o polinômio P(x) pelo polinômio D(x) é obter os polinômios Q(x) e R(x) tais que:

$$P(x) = D(x) \cdot Q(x) + R(x)$$

onde $0 \le G_R < G_D$ ou a divisão é exata e R(x) = 0

Quando o resto da divisão de P(x) por D(x) é nulo, dizemos que o polinômio P(x) é divisível por D(x).

10. Divisão de Polinômios - Método da Chave

Método da chave

Vamos dividir $2x^3+3x-1$ por x^2+2x+5

Solução: Completa-se o dividendo com 0x2

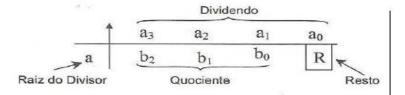
Então:
$$Q(x) = 2x - 4$$

 $R(x) = x + 19$

11. Divisão de Polinômios - Dispositivo Prático de Briot-Ruffini

Este dispositivo é utilizado para dividir um polinômio P(x) por um polinômio do 1º grau da forma x-a. Neste método, trabalha-se apenas com os coeficientes do polinômio e com o valor de a.

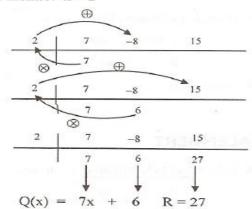
Dispositivo: Seja $P(x)=a_3x^3+a_2x^2+a_1x+a_0$ por D(x)=x-a



Exemplo:

$$P(x) = 7x^2 - 8x + 15$$

Binômio: $x - 2$



OBS: Se o resto da divisão é zero, então o polinômio é divisível pelo binômio divisor.

12. Divisão de Polinômios - Teorema do Resto

O resto da divisão de um polinômio P(x) por um binômio do 1ºgrau do tipo x-a é igual ao valor numérico do polinômio P(x) para x=a, ou seja, P(a)=R.

$$P(x) = x - a$$

$$R = Q(x)$$

R = P(a), onde a é raíz do binômio (x - a).

Como o divisor é do 1º grau, o resto é nulo ou tem grau zero. De qualquer modo, R é uma constante, isto é, independente de x. Para calcular o valor de R basta substituir na identidade x por a. Note que a é raiz do binômio.

13. Divisão de Polinômios - Teorema de D'Alembert

Teorema de D'Alembert

Um polinômio P(x) é divisível pelo binômio x-a se, e somente se, P(a)=0.

$$P(x) x - a$$

$$0 Q(x)$$

$$R = P(a) = 0$$

Note que "a" além de ser raiz do binômio x-a é também raiz do polinômio P(x).

14. Polinômio de Grau 3: como encontrar todas as raízes conhecendo-se uma delas

OBS: Conhecida uma raiz ${\bf r}$ do polinômio ${\bf P}({\bf x})$, podemos obter as demais raízes de ${\bf P}({\bf x})$ da seguinte maneira:

Dividimos P(x) por x-r, usando o algoritmo de Briott-Ruffini. As raízes do quociente Q(x) dessa divisão são as demais raízes de P(x).

Divisão por (x-a)(x-b)

Se um polinômio P(x) é divisível separadamente pelos binômios (x-a) e (x-b), com $a\neq b$, então P(x) é divisível pelo produto (x-a)(x-b). (A recíproca é verdadeira)

Generalizando, se P(x) é divisível por n fatores distintos $(x-a_1)$, $(x-a_2)$, ..., $(x-a_n)$ então P(x) é divisível pelo produto $(x-a_1)$. $(x-a_2)$... $(x-a_n)$.

15. Equações Polinomiais

<u>Definição</u>: Se P(x) é um polinômio de grau n>0, chama-se equação algébrica ou polinomial à igualdade P(x)=0. Assim, equação algébrica de grau n é uma equação do tipo:

$$P(x)=a_n x^n + a_{n-1} x^{n-1} + ... a_2 x^2 + a_1 x + a_0 = 0, a_0 \neq 0.$$

Raiz de uma equação algébrica

Dada uma equação algébrica P(x)=0, o número r é uma raiz dessa equação se, e somente se, P(r)=0.

Conjunto-solução

Conjunto-solução de uma equação algébrica é o conjunto formado por todas as raízes (e somente por elas) da equação. Resolver uma equação é obter seu conjunto solução.

16. Equação do Primeiro Grau

Conjunto-solução de uma equação algébrica é o conjunto formado por todas as raízes (e somente por elas) da equação. Resolver uma equação é obter seu conjunto solução.

17. Equação do Segundo Grau

Uma equação é classificada como equação do 2° grau quando puder ser escrita sob a forma ax $^2+bx+c=0$,

onde a,b e c são reais, com a≠0. Uma equação do 2º grau tem no máximo duas raízes, que podem ser obtidas pela fórmula:

$$\mathbf{x} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{\Delta}}{2a}$$

OBS:

- Se Δ>0 então a equação admite duas raízes reais e distintas
- Se Δ=0 então a equação admite duas raízes reais e iguais.
- Se Δ<0 então a equação admite duas raízes complexas.

18. Equações do Terceiro e Quarto Graus

Uma equação é classificada como equação do 3º e 4º grau, quando puder ser escrita sob a forma $ax^3 + bx^2 + cx + d = 0$ ou $ax^4 + bx^3 + cx^2 + dx + e = 0$

As raízes das equações do terceiro e quarto graus podem ser obtidas através de fórmulas gerais que são extremamente trabalhosas.

OBS: As equações de grau superior a 4 não apresentam fórmulas resolutivas. Desta forma, apresentam-se teoremas válidos para quaisquer equações algébricas que possibilitam a resolução ou, ao menos, informações úteis na obtenção das raízes de uma equação.

19. Teorema Fundamental da Álgebra

O teorema da Álgebra sobre equações algébricas de coeficientes reais diz:

Toda equação algébrica de grau n admite no conjunto dos números complexos n raízes complexas.

O teorema garante a existência de n raízes complexas, não diz como obtê-las.

O teorema tem validade no conjunto dos números complexos, ou seja, pode ou não ter raiz real.

(Procurar um texto melhor!!!)

20. Teorema da Decomposição

Seja $P(x)=a_n x^n + a_{n-1} x^{n-1} + ... a_2 x^2 + a_1 x + a_0$ um polinômio de grau n>0. Demonstra-se que P(x) pode ser decomposto, ou seja, fatorado, na forma seguinte:

$$P(x) = a_n \cdot (x - r_1) \cdot (x - r_2) \cdot ... \cdot (x - r_n)$$
 onde $r_1, r_2, ..., r_n$. são as raízes da equação: $P(x) = 0$

OBS: Esta forma fatorada mostra que a equação tem no máximo n raízes distintas, e não exatamente n, pois não sabemos se os números $\underline{r_1, r_2, ..., r_n}$ são todos distintos dois a dois.

21. Multiplicidade de uma raiz

Dizemos que r é uma raiz de multiplicidade m (m≥1), da equação P(x)=0 se, e somente se, a equação puder ser escrita sob a forma,

$$(x-r)^{m}$$
. $Q(x)=0$

Isto é, r é raiz de multiplicidade m de P(x)=0 quando o polinômio P é divisível por $(x-r)^m$, ou seja, a decomposição de P apresenta exatamente m fatores iguais a (x-r).

Exemplo: A equação $x^5 \cdot (x+8)^3$ admite as raízes x=0 (com multiplicidade 5) e x=-8 (com multiplicidade 3).

22. Pesquisa de raízes

Quando se conhece uma raiz r de uma equação algébrica P(x)=0, divide-se P(x) por x-r, recaindo-se numa de grau menor.

Exemplo: Se x=-3 é uma raiz da equação $x^3+3x^2+2x+6=0$, determine as outras raízes.

=-3 e uma raiz da equação
$$x + 3x + 2x + 6 = 0$$
, determine

$$\begin{array}{c|cccc}
-3 & 1 & 3 & 2 & 6 \\
\hline
& 1 & 0 & 2 & 0 & \longrightarrow \\
& x^2 + 2 = 0 \\
& x^2 = -2 \\
& x = \pm \sqrt{2} i
\end{array}$$
Resto

23. Teorema das Raízes Inteiras

Se r é uma raiz inteira de uma equação algébrica de coeficientes inteiros.

$$a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$$

com $a_n \neq 0$, então r é um divisor de a_0 .

OBS: Este teorema permite descobrir se a equação tem ou não raízes inteiras; basta para tanto, verificar um por um os divisores do termo independente de x, a₀.

Se $r=\frac{p}{q}$ (p e q inteiros primos entre si), é uma raiz da equação algébrica \overline{c} om coeficientes inteiros.

$$a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$$

com $a_n \neq 0$, então p é divisor de a_0 e q é divisor de a_n .

Observação:

Este teorema abrange o anterior, ou seja, o conjunto das possíveis raízes racionais contém o conjunto das possíveis raízes inteiras.

24. Teorema do Fator

Definição Se c é uma raiz de um polinômio p(x), de grau n > 0, então x - c é um fator de p(x).

Demonstração:

Pelo Teorema do Resto, a divisão de p(x) por x-c resulta num quociente q(x) e um resto p(c) tal que:

$$p(x) = (x - c).q(x) + p(c)$$

Se c é uma raiz de p(x), então p(c) = 0 e temos:

$$p(x) = (x - c).q(x)$$

Portanto, x - c é um fator de p(x).

Como consequencia, podemos dizer que p(x) é divisivel por (x-a) e por (x-b), com $a \neq b$, se, e somente se, p(x) for divisível por (x-a).(x-b).

25. Teorema das Raízes Complexas

Se um número complexo x = a + bi $(a, b \in R)$ é raiz de uma equação algébrica com **coeficientes reais**, então o seu conjugado $\overline{x} = a - bi$ também é raiz equação.

Importante:

Este teorema apresenta as consequências:

- O número de raízes complexas, não reais, de uma equação algébrica com coeficientes reais é sempre par.
- Toda equação algébrica de coeficientes reais e grau ímpar tem pelo menos uma raiz real.

26. Dica sobre Raízes de Polinômios

Observação — **DICA!**. Desenhe a função $p(x) = x^3 - 4x$ num gráfico -3 < x < 3.

Note que, p(-1) > 0 e por isso está acima do eixo x enquanto p(1) < 0 está abaixo. Isso quer dizer que existe pelo menos um -1 < x < 1 tal que p(x) = 0 e veja que, nesse caso, esse x é igual a zero.

Agora, propomos para você tentar encontrar mais uma raiz de p(x) sabendo que p(1) < 0 e p(3) > 0. (Perceba que, no grafico desenhado, p(x) corta o eixo x em três pontos e que um deles está entre -1 e 1, outro entre 1 e 3 e o ultimo entre -3 e -1).

Em outras palavras no intervalo em que p(x) muda de sinal(do positivo para o negativo ou vice-versa) ele corta o eixo x, isso quer dizer que, nesse intervalo, existe uma raiz a de p(x)(p(a) = 0).

CUIDADO!!!!!

Essa dica não funciona para todo tipo de função, mas no caso dos polinômios ela é válida quando p(x) tem raízes reais.

27. Produtos Notáveis

Os produtos notáveis são multiplicações entre polinômios, muito conhecidas em virtude de seu uso extenso.

Igualdade	Exemplo
$(a+b)^2 = a^2 + 2ab + b^2$	$(x+2)^2 = x^2 + 2x + 4$
$(a+b)^2 = a^2 - 2ab + b^2$	$(4x-2)^2 = 16x^2 - 16x + 4$
$a^2-b^2 = (a+b)(a-b)$	$x^2 - 5 = (x - \sqrt{5})(x + \sqrt{5})$
$(x-a)(x-b)=x^2-(a+b)x+ab$	$(x-5)(x-2)=x^2-7x+10$
$x^2-a^2 = (x-a)(x+a)$	$x^2-4 = (x-2)(x+2)$
$x^3 - a^3 = (x - a)(x^2 + ax + a^2)$	$x^3 - 8 = (x - 2)(x^2 + 2x + 4)$
$x^{4}-a^{4} = (x-a)(x^{3} + ax^{2} + a^{2}x + a^{3})$	$x^4 - 16 = (x - 2)(x^3 + 2x^2 + 4x + 8)$
$x^{5}-a^{5} = (x-a)(x^{4} + ax^{3} + a^{2}x^{2} + a^{3}x + a^{4})$	$x^5-32 = (x-2)(x^4+2x^3+4x^2+8x+16)$
$\mathbf{X}^{n} - a^{n} = (x - a)(x^{n-1} + ax^{n-2} + a^{2}x^{n-3} + \dots + a^{n-2}x + a^{n-1})$	

28. Fatoração

Fatorar um polinômio significa reescrevê-lo como produto de outros polinômios.

Exemplos:

a)
$$x^3 - x =$$

b)
$$x^4 - 5x^2 =$$

c)
$$x^4 - 1 =$$

d)
$$x^3 + 8 =$$

e)
$$x^6 - 27 =$$

29. Completar Quadrados

O processo de completar quadrados tem base nas fórmulas de produtos notáveis (a+b)² e (a-b)², fazendo-se uma comparação direta entre os termos . É uma operação muito utilizada em polinômios de grau 2.

Exemplos: Completar quadrados:

a)
$$x^2 + 6x$$

Temos que comparar com (a+b)²

$$(a+b)^2 = a^2 + 2ab + b^2$$

= $x^2 + 6x$

Comparando, diretamente, temos a=x e que 2ab=6x \rightarrow 2b=6 \rightarrow b=3. Logo b²=9.

$$(a+b)^2 = a^2 + 2ab + b^2$$

 $(x+3)^2 = x^2 + 6x + 9$

Assim:
$$x^2 + 6x = x^2 + 6x + (9-9) = (x^2 + 6x + 9) - 9 = (x + 3)^2 - 9$$

b)
$$x^2 - x + 2 = (x^2 - x) + 2$$

Inicialmente, vamos desconsiderar a constante. Podemos comparar essa expressão com (a-b)², pois o coeficiente do termo de grau 1 é negativo. Assim:

$$(a-b)^2 = a^2 - 2ab + b^2$$

 $x^2 - x$

Comparando, diretamente, temos que a=x e que 2ab=x. Daí, 2b=1 \Rightarrow b=1/2. Logo, b²=1/4

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$\left(x - \frac{1}{2}\right)^2 = x^2 - x + \frac{1}{4}$$

c) Assim,
$$(x^2 - x) + 2 = (x^2 - x) + 2 - \frac{1}{4} + \frac{1}{4} = \left(x^2 - x + \frac{1}{4}\right) + 2 - \frac{1}{4} = \left(x - \frac{1}{2}\right)^2 + \frac{7}{4}$$

30. Algumas Curiosidades sobre Polinômios

Você se lembra do número e? Aquele número irracional que estudamos em função exponencial e função logarítmica?

Em matemática temos que a função exponencial pode ser aproximada por um polinômio chamado de polinômio de Taylor, cuja representação é:

$$e^x = p(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!}$$

Assim observe que temos um polinômio de grau 5 que aproxima uma função a um determinado valor. Por exemplo:

$$e^1 = p(1) = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} = 2,7166666...$$

Logo concluímos que $e \approx 2,7$ utilizando o polinômio de Taylor.

Existem também os polinômios de Taylor de diversas funções matemáticas. Veja, como exemplo, o polinômio de Taylor de grau 8, que aproxima os valores da função cosseno:

$$\cos(x) = p(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$$

31. Encontrar Coeficientes de Polinômios

Para encontrar os coeficientes de um polinômio, podemos usar diferentes métodos, dependendo do contexto e das informações disponíveis. A seguir, estão algumas abordagens comuns:

1. Polinômio Definido por Raízes (Fatores Lineares)

Se as raízes (ou zeros) do polinômio forem conhecidas, o polinômio pode ser construído na forma fatorada:

$$P(x) = a(x - r_1)(x - r_2) \cdots (x - r_n)$$

Aqui, r_1, r_2, \ldots, r_n são as raízes do polinômio, e a é o coeficiente líder (um valor que pode ser determinado a partir de uma condição adicional, como P(0)).

Para encontrar os coeficientes, expandimos a forma fatorada multiplicando os termos.

2. Interpolação Polinomial

Se você tiver um conjunto de pontos $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ que o polinômio deve passar, você pode montar um sistema de equações lineares para encontrar os coeficientes. O polinômio terá a forma:

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Substituímos cada par (x_i, y_i) na equação do polinômio para gerar um sistema de equações que pode ser resolvido para a_0, a_1, \ldots, a_n .

3. Derivadas e Condições Iniciais

Se você conhece valores do polinômio e de suas derivadas em um ponto específico, pode usar esses dados para encontrar os coeficientes. Para um polinômio de grau n, precisamos conhecer o valor do polinômio e suas primeiras n derivadas em um ponto específico x_0 :

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n$$

As condições fornecidas pelo valor do polinômio e suas derivadas em x_0 permitem criar um sistema linear que pode ser resolvido para encontrar os coeficientes a_0, a_1, \ldots, a_n .

4. Método de Regressão

Se os coeficientes do polinômio precisam ser ajustados a um conjunto de dados que não segue exatamente uma relação polinomial (por exemplo, em análise de regressão), uma abordagem é minimizar a soma dos quadrados dos erros entre os valores previstos pelo polinômio e os valores observados.

Esse método ajusta os coeficientes a_0, a_1, \ldots, a_n de modo a melhor representar o conjunto de dados fornecido.

5. Uso de Ferramentas Computacionais

Para cálculos mais complexos, é comum usar bibliotecas de software, como `NumPy` em Python, que fornecem funções para ajustar polinômios a dados, encontrar coeficientes a partir de raízes, ou resolver sistemas de equações lineares.

Cada uma dessas abordagens pode ser usada em diferentes contextos, dependendo das informações disponíveis e do objetivo específico de encontrar os coeficientes do polinômio.

Resumo:

Cada uma dessas abordagens pode ser usada em diferentes contextos, dependendo das informações disponíveis e do objetivo específico de encontrar os coeficientes do polinômio.

32. As relações de Girard

Definição: Chama-se de **equação polinomial** de grau n, $n \in \mathbb{N}$, na variável $x \in \mathbb{C}$, toda equação que pode ser escrita da forma:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 = 0$$

Onde a_n , a_{n-1} , ..., a_0 são os coeficientes reais do polinômio p(x), sendo que $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_{n-1} + a_{n-1} x^$

Muitos estudiosos trabalharam em diversos métodos para resolução desse tipo de equação e um deles foi Albert Girard. A ideia dele foi relacionar os coeficientes (reais ou complexos) e as raízes de uma equação polinomial. Essas relações ficaram conhecidas como **Relações de Girard** e são muito utilizadas até hoje. Vejamos como escrevê-las para polinômios de diversos graus.

• As relações de Girard para polinômios de segundo grau

Polinômios de 2° grau

Sejam $p(x)=ax^2+bx+c$, onde a $\neq 0$, x_1 e x_2 raízes de p(x), então as relações de Girard são dadas por:

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1. x_2 = \frac{c}{a}$$

As relações de Girard para polinômios de terceiro grau

Polinômios de 3° grau

Considere o polinômio $p(x)=ax^3+bx^2+cx+d$, onde a $\neq 0$, e sejam x_1 , x_2 e x_3 raízes de p(x), então as relações de Girard são dadas por:

$$x_1 + x_2 + x_3 = -\frac{b}{a}$$

$$x_1 \cdot x_2 + x_1 \cdot x_3 + x_2 \cdot x_3 = \frac{c}{a}$$

$$x_1 \cdot x_2 \cdot x_3 = -\frac{d}{a}$$

As relações de Girard para polinômios de quarto grau

Polinômios de 4° grau

Seja o polinômio de quarto grau $p(x)=ax^4+bx^3+cx^2+dx+e$, onde a $\neq 0$, e sejam x_1 , x_2 , x_3 e x_4 raízes desse polinômio. Escrevemos que as relações de Girard de uma equação polinomial de quarto grau são:

$$x_1 + x_2 + x_3 + x_4 = -\frac{b}{a}$$

$$x_1 \cdot x_2 + x_1 \cdot x_3 + x_1 \cdot x_4 + x_2 \cdot x_3 + x_2 \cdot x_4 + x_3 \cdot x_4 = \frac{c}{a}$$

$$x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_4 + x_1 \cdot x_3 \cdot x_4 + x_2 \cdot x_3 \cdot x_4 = -\frac{d}{a}$$

$$x_1 \cdot x_2 \cdot x_3 \cdot x_4 = \frac{e}{a}$$

• As relações de Girard para polinômios de grau n

Polinômios de grau n

Se p(x)= $a_nx^n+a_{n-1}x^{n-1}+\cdots+a_2x^2+a_1x+a_0$ é um polinômio de grau n (n \geq 1), onde $a_n\neq 0$, cujas raízes são x₁, x₂,...,x_n, então temos que as relações de Girard podem ser escritas como:

$$x_1 + x_2 + \dots + x_n = -\frac{a_{n-1}}{a_n}$$

$$x_1 \cdot x_2 + x_1 \cdot x_3 + \dots + x_1 \cdot x_n + x_2 \cdot x_3 + x_2 \cdot x_4 + \dots + x_{n-1} \cdot x_n = \frac{a_{n-2}}{a_n}$$

$$x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_4 + \dots + x_{n-2} \cdot x_{n-1} \cdot x_n = -\frac{a_{n-3}}{a_n}$$

$$x_1 \cdot x_2 \cdot x_3 \cdot \dots \cdot x_{n-1} x_n = \frac{(-1)^n a_0}{a_n}$$

Ou seja, teremos tantas relações de Girard quanto for o grau do polinômio que compõe a equação polinomial estudada.